
The Oracle Background Processes
for Sybase Pros

By Mich Talebzadeh

September 2006

In this article we will be looking at the Oracle background processes and
what they mean.

Mich Talebzadeh is a consultant and a technical architect who has worked with Sybase and other
databases since the early 1990s. He is the co-author of the book “Sybase Transact SQL
Programming Guidelines and Best Practices” and the author of the forthcoming book “Oracle
and Sybase, Concepts and Contrasts”. Mich can be reached at mich@peridale.co.uk.

Disclaimer: Great care has been taken to make sure that the technical information presented in this paper
is accurate, but any and all responsibility for any loss, damage or destruction of data or any other property
which may arise from relying on it is explicitly disclaimed. The author will in no case be liable for any
monetary damages arising from such loss, damage or destruction.

 1

The Components of an Oracle Instance

Oracle memory usage can be broken down into two basic types, namely private and
shared. Private memory is used only by a single process. In contrast, shared memory is
used by more than one process. An Oracle instance consists of shared memory and
a collection of background processes. The shared memory part is obtained from the
shared memory on host and consists of the shared memory, private memory and the
process and parameter overheads as follows:

Total memory used by Oracle = System Global Area (SGA) + Aggregate Program Global
Area (PGA) + 40MB of Oracle process size + the defaults for empty parameters (1MB)

The 40MB is required for the Oracle process and around 1MB is allocated to the empty
initialisation parameters of Oracle. So effectively Oracle memory is consumed by the
SGA and the aggregate PGA. The largest segment of shared memory with Oracle is
usually the SGA. SGA has various components. Internally within Oracle the size of SGA
is controlled by two parameters SGA_MAX_SIZE and SGA_TARGET. The parameter
SGA_TARGET is new in Oracle 10g. PGA is the private memory used by a single
process. The upper limit on PGA is set by the initialization parameter
PGA_AGGREGATE_TARGET.

The Oracle Background Processes

The Oracle background processes and the server processes share the SGA. When you
start up an Oracle instance, the background processes are created from the Oracle
binary. Background processes, as the name says, are processes running behind the
scene and are meant to perform certain maintenance activities or deal with abnormal
conditions arising in the lifetime of the instance. As we will see, each background
process is meant for a specific purpose and its role is well defined. Throughout this book
I will use examples of my Oracle 10g on Linux. My oracle instance is called “mydb”.
Oracle calls this name SID. SID is the site identifier for an Oracle instance. On a UNIX
host, multiple Oracle instances could co-exit (much like multiple ASE servers).
Additionally, it is worth mentioning that these days, a majority of beefy data servers have
a combination of Oracle and Sybase servers, running on the same host.

When you create an Oracle instance, a so-called magic key is created by
hashing together the UNIX environment variables $ORACLE_HOME and
$ORACLE_SID. On a given host, this magic key is unique (since you cannot
have two instances with the same name and the same version running on the
same host). Oracle uses this unique key to attach this instance to the relevant
shared memory segment. Otherwise if either of these variables is set wrongly,
the instance cannot be started.

Oracle can use either the “process based” or the “thread based (otherwise known as
Shared Server or Multi-Threaded Server MTS)” architectures. On UNIX platform the
default behaviour of Oracle is processed based. That is all of the processes are
operating system processes and not threads. On Windows, Oracle uses a thread based
model within a single process. On UNIX you can change from process based to thread

 2

based/shared server mode. However you will need to configure Oracle Net Services
accordingly. This will be explained later.

I will be doing a fast track to connecting to an Oracle instance here. This
process will be explained later. You can use an Oracle client utility called
SQL*Plus (it is much like isql in Sybase) to connect to, start and stop an
Oracle instance. Assuming that you have set up the environment variables
ORACLE_BASE and ORACLE_HOME (read $SYBASE in ASE) correctly and
of course the PATH, you will specify which Oracle instance you want to
connect to by setting the environment variable ORACLE_SID (read
$DSQUERY in ASE). For now to start an Oracle instance, you log in to the
host that Oracle is running with the UNIX login “Oracle” (or anyone else who
happens to be a member of UNIX “dba” group). Oracle allows you to connect
to an idle instance using the OS authentication method without knowing the
relevant “sys” user password. “sys” user is the most powerful user in Oracle
(equivalent to ASE’s “sa” login/user). As an example I have set up the above
environment variables in my Linux host as follows:

ORACLE_BASE=/u01/app/oracle
ORACLE_HOME=/u01/app/oracle/product/10.1.0/db_1
ORACLE_SID=mydb

Note that Oracle provides a shell routine oraenv for this purpose. Once you
are there you just type the following at the operating system level:

oracle@linux:/home/oracle% ${ORACLE_HOME}/bin/sqlplus "/ as
sysdba"

SQL*Plus: Release 10.1.0.3.0 - Production on Sun Jul 17 08:47:45 2005

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to an idle instance.

idle>

The quotes in sqlplus “/ as sysdba” are important. SYSDBA is a special
database role that gives you the necessary privileges to perform
administration functions. Now to start the instance you can do the following:

idle> startup
ORACLE instance started.

Total System Global Area 1526726656 bytes
Fixed Size 779256 bytes
Variable Size 384834568 bytes
Database Buffers 1140850688 bytes
Redo Buffers 262144 bytes
Database mounted.
Database opened.

To stop the instance you issue the following command

sys@MYDB.MICH.LOCAL> shutdown immediate
Database closed.
Database dismounted.

ORACLE instance shut down.

 3

You can log in to a running Oracle instance by issuing the same connection
command:
oracle@linux:/home/oracle% sqlplus "/ as sysdba"

SQL*Plus: Release 10.1.0.3.0 - Production on Sun Jul 17 09:05:53 2005

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to:
Oracle Database 10g Enterprise Edition Release 10.1.0.3.0 - Production
With the Partitioning, OLAP and Data Mining options

sys@MYDB.MICH.LOCAL>

What does connect / as sysdba mean?

This syntax is used to connect to the Oracle database with very powerful
privileges. In particular, it allows the user to stop and start the instance.

When it is used, Oracle does not check the password held for the user in the
database's data-dictionary but instead checks that the current operating
system userid is defined in the "dba" group (if the OS is UNIX) or ORA_DBA
group (if the OS is Windows NT/2000). If the user is in this group, then the
user is allowed to connect. If the user is not in this group, an error message
ORA-01031: insufficient privileges error message, or an Enter password
prompt is displayed.

The reason the data dictionary password is not used is that Oracle needs
some mechanism of checking that the user is sufficiently authorized to start
the database even when the database is down. Being a member of this OS
group is sufficient proof that one is authorized to stop and start the instance,
since only the system administrator (root on UNIX or Administrator on
Windows) can add users to this group.

The connect / as sysdba technique can therefore be used as a method of
logging in as SYS or SYSTEM when one has forgotten both their passwords:
Use connect / as sysdba to connect as SYS, then change the SYS and
SYSTEM passwords.

The statement:

connect anything/anything as sysdba

has exactly the same effect as connect / as sysdba, ie. it logs you in as SYS
with stop and start database privileges. The supplied userid and password
are ignored. No password prompt is given providing the current operating
system userid is in the appropriate group.

The statement:

connect sys as sysdba

 4

Or indeed, connect anything as sysdba causes an Enter password prompt
to be issued (even if the operating system userid is in the appropriate group),
and the password held in the data-dictionary must then be entered to
complete the login. This is probably a bug: I suspect the command parser
detects that there is no / in the command and therefore that no password has
been supplied, before it recognizes that no password is, in fact, necessary
because as sysdba syntax has been used). If the database is up, the valid
password for the user must be entered. I suspect this is the case, but have
not tested it yet. If the database is down, then whatever is entered, as the
password will be rejected because Oracle will be unable to validate it.

Now I connect to my idle Oracle instance. As mentioned a user must connect as
SYSDBA or as SYSOPER privileges if he/she wants to perform administrator tasks. I
connect to Oracle on my UNIX host using operating system authentication process.

oracle@linux:/home/oracle% sqlplus "/ as sysdba"

SQL*Plus: Release 10.1.0.3.0 - Production on Fri Apr 22 11:05:12 2005

Copyright (c) 1982, 2004, Oracle. All rights reserved.

Connected to an idle instance.
>idle

At this stage there is nothing running on host with respect to my Oracle instance mydb.
Let me issue a ps command on the host and see what is going on

oracle@linux:/home/oracle% ps -auxww | grep oracle

root 7120 0.0 0.0 6740 1964 ? S 09:55 0:00 sshd: oracle [priv]
oracle 7122 0.0 0.0 9704 2920 ? R 09:55 0:00 sshd: oracle@pts/0
oracle 7123 0.0 0.0 1680 592 pts/0 S 09:55 0:00 -ksh
oracle 7143 0.0 0.0 4728 1576 pts/0 R 09:55 0:00 -sh
root 10246 0.0 0.0 6740 1964 ? S 11:13 0:00 sshd: oracle [priv]
oracle 10248 0.1 0.0 9704 2920 ? S 11:13 0:00 sshd: oracle@pts/1
oracle 10249 0.0 0.0 1684 588 pts/1 S 11:13 0:00 -ksh
oracle 10269 0.2 0.0 4688 1496 pts/1 S 11:13 0:00 -sh
oracle 10293 0.2 0.1 17152 5960 pts/1 S 11:13 0:00 sqlplus
oracle 10295 0.3 0.2 76356 7564 ? S 11:13 0:00 oraclemydb
(DESCRIPTION=(LOCAL=YES)(ADDRESS=(PROTOCOL=beq)))

The only thing really relevant is my server connection to the idle instance. The server
processes are named oracleSID (oraclemydb in this case). Next I will go and allocate
resources (SGA) from shared memory and start the background processes, but do no
not mount the database. As explained later “STARTUP NOMOUNT” command tells
Oracle to read the initialization file, allocate SGA, start background processes and open
the alert and trace files

idle> startup nomount
ORACLE instance started.

Total System Global Area 1476395008 bytes
Fixed Size 779196 bytes
Variable Size 435166276 bytes
Database Buffers 1040187392 bytes
Redo Buffers 262144 bytes

 5

Let us have a look at the OS again and only display the Oracle background processes.

oracle@linux:/home/oracle% ps -auxww|grep ora_

oracle 10332 0.0 0.3 1523872 10884 ? S 11:18 0:00 ora_pmon_mydb
oracle 10334 0.0 0.2 1523260 9300 ? S 11:18 0:00 ora_mman_mydb
oracle 10336 0.0 0.3 1524704 10888 ? S 11:18 0:00 ora_dbw0_mydb
oracle 10338 0.0 0.2 1523256 9336 ? S 11:18 0:00 ora_lgwr_mydb
oracle 10340 0.0 0.2 1523256 10180 ? S 11:18 0:00 ora_ckpt_mydb
oracle 10342 0.0 0.2 1523264 9336 ? S 11:18 0:00 ora_smon_mydb
oracle 10344 0.0 0.2 1523256 9292 ? S 11:18 0:00 ora_reco_mydb
oracle 10346 0.0 0.2 1523276 9284 ? S 11:18 0:00 ora_cjq0_mydb
oracle 10348 0.0 0.2 1524440 9380 ? S 11:18 0:00 ora_d000_mydb
oracle 10350 0.0 0.2 1523864 9104 ? S 11:18 0:00 ora_s000_mydb

Note that anything with format “ora_<ProcessName>_<SID>” (and in this case
“ora_<ProcessName>_mydb” such as “ora_pmon_mydb”) is an Oracle background
process. They were started when I issued the command “STARTUP NOMOUNT”.There
is an OS process for every Oracle background process. As the name says, these
background processes run behind the scene and perform certain maintenance activities
or deal with abnormal conditions arising in the lifetime of the instance.

SYBASE Notes These Oracle background processes are in essence similar to Sybase ASE
internal processes as shown below:

1> sp_who
2> go
 fid spid status loginame origname
hostname blk_spid dbname cmd block_xloid
 ------ ------ ------------ ------------------------------ ------------------------------
---------- -------- ------------------------------ ---------------- -----------
 0 1 sleeping NULL NULL
0 master CHKPOINT WRKR 0
 0 2 sleeping NULL NULL
0 master DEADLOCK TUNE 0
 0 3 sleeping NULL NULL
0 master ASTC HANDLER 0
 0 4 sleeping NULL NULL
0 master ASTC HANDLER 0
 0 5 sleeping NULL NULL
0 master ASTC HANDLER 0
 0 6 sleeping NULL NULL
0 master ASTC HANDLER 0
 0 7 sleeping NULL NULL
0 master CHECKPOINT SLEEP 0
 0 8 sleeping NULL NULL
0 master HK WASH 0
 0 9 sleeping NULL NULL
0 master HK GC 0
 0 10 sleeping NULL NULL
0 master HK CHORES 0
 0 11 sleeping NULL NULL
0 master PORT MANAGER 0
 0 12 sleeping NULL NULL
0 master NETWORK HANDLER 0
 0 13 sleeping NULL NULL
0 master NETWORK HANDLER 0
 0 15 sleeping NULL NULL
0 master CHKPOINT WRKR 0
 0 19 sleeping NULL NULL
0 master CHKPOINT WRKR 0
 0 20 sleeping NULL NULL
0 master CHKPOINT WRKR 0
 0 21 sleeping NULL NULL
0 master PLC FLUSHER 0

 6

 0 41 sleeping NULL NULL
0 master LOG WRITER 0

ASE internal processes have suid = 0 indicating that they are ASE’s internal or background
processes (please note that in this respect replication agent processes REP AGENT are also
considered as background processes). They perform more and less the same function as Oracle
background processes. Therefore, Oracle’s BACKGROUND processes are equivalent to ASE’s
internal threads.

To get a list of all Oracle background processes you can use the following
SQL command

select * from v$process where background = 1;

Similarly for Sybase you can try the following:

select * from master..sysprocesses where
suid = 0
go

Note that to execute a command in SQL*Plus you terminate it with a “;”
column. In ASE you do so by issuing a “go” command on a new line

Turning to Oracle, let us see briefly, what some of these background processes do:

• PMON
The Process Monitor checks if a user process fails and if so, does all cleaning up
of resources that the user process has acquired such as rolling back the
uncommitted transactions and releasing locks. PMON also does service
registration with the Oracle listener.

SYBASE Notes In ASE, for aborted threads, the rollback of uncommitted transactions is
handled by the thread itself. That is the reason why threads can hang on even after being killed.
The ASE internal threads Port Manager and Network Handlers(s) handle the entire network and
connection related stuff.

• MMAN
MMAN dynamically adjust the sizes of the SGA components. It is a new process
added to Oracle 10g as part of automatic shared memory management.

SYBASE Notes There is no dynamic memory allocation in ASE yet. However, you can use
sp_sysmon with “cache wizard” option to advise you of changes required to various ASE
structures in order to achieve better performance

 7

• DBWR
The Database Writer writes dirty blocks from the database buffer to the datafiles.
Dirty blocks need to be flushed out to disk to make room for new blocks in the
cache. The checkpoint process (CKPT) uses DBWR to write dirty buffers to disk.
This is normally referred to as scattered or random writes, because the dirty
blocks to be written could be anywhere on the disk(s). You can configure more
than one DBWR process up to 10. This depends on the number of CPUs
allocated to the instance. To have more than one DBWR only make sense if
each DBWR has been allocated its own list of blocks to write to disk. This is done
through the initialization parameter DB_BLOCK_LRU_LATCHES. If this
parameter is not set correctly, multiple DBWRs can end up contending for the
same block list.

SYBASE Notes In ASE the role of Oracle’s DBWR(s) and CKPT is performed by Checkpoint
Worker(s) and Checkpoint Sleep threads. Checkpoint Worker thread performs the actual flushing
of dirty pages from the cache to disk. Checkpoint sleep performs periodic checkpoints.

• LGWR
The Log Writer writes the redo log buffer from the SGA to the online redo log file.
LGWR does this every three seconds, whenever a user issues a commit, a
checkpoint happens or whenever the redo log buffer is 1MB or more than 1/3 full.
This means that there is no point in making the redolog buffer more than 3MB.
Note that the logs are written via sequential writes as opposed to scattered
writes.

SYBASE Notes In ASE under normal operations there is no single process like LGWR. ASE
has multiple databases each with its own transaction log. ASE uses the concept of group commit
to flush the log Cache to disk. Each user in ASE is allocated a chunk of cache from ASE memory
called User Log Cache (ULC). When a thread generates a log records, the records are written to
ULC. When the transaction commits or aborts or the ULC is full, ULC is flushed to the Log Cache.
In databases with high transaction requirements, you can turn on a database option called
“Asynchronous log service” or ALS. You can only turn on this option if you have four or more ASE
engines. Turning on this option will start two ASE internal threads. These are PLC Flusher and
Log Writer. The PLC Flusher flushes the User Log Cache to the Log Cache. The Log Writer
performs a similar role to Oracle’s LGWR by writing the Log Cache pages to disk (syslogs table).

It is important to understand the concept of scattered writes vis-à-vis
sequential writes. Both Oracle and Sybase checkpoint processes deploy
scattered or random writes. Typically, the dirty blocks or pages contain data
from different tables etc. A write process may have to update data on different
locations on different disks. These updates could contain data pertinent to
tables, indexes and so forth. With the widespread use of Storage Area
Networks (SAN) disks, the random writes are significantly faster than before.
However, the random writes are slower than sequential writes performed by
LGWR in Oracle and by means of “Group Commit” or Log Writer in ASE.

 8

• CKPT
The Checkpoint Process regularly initiates a checkpoint. A checkpoint process

o Flushes the redo log buffer to redo log files by means of LGWR
o Writes a checkpoint record to the redo log file
o Uses DBWR to write all dirty blocks back to the datafiles, thus

synchronizes the database.
o Updates the file headers of the data files with information about the last

checkpoint performed
o Update the control files about the last checkpoint

SYBASE Notes In ASE the role of Oracle’s DBWR(s) and CKPT is performed by Checkpoint
Worker(s) and Checkpoint Sleep threads. Checkpoint Worker thread performs the actual flushing
of dirty pages from the cache to disk. Checkpoint sleep performs periodic checkpoints.

• SMON
The System Monitor carries out a crash recovery when a crashed instance is
started up again. SMON cleans temporary segments. It also merges contiguous
areas of free space in the datafiles, a process known as coalescing.

SYBASE Notes In ASE this role is performed by threads, all part of the House Keeper (HK)
family. These are HK Chores, HK Wash and HG GC (Garbage Collector).

• RECO
The Distributed Transaction Recovery Process finds pending distributed
transactions and resolves them. Pending distributed transactions are two-phase
commit transactions involving multiple databases. The database that the
transaction started is normally the coordinator. It will send request to other
databases involved in two-phase commit if they are ready to commit. If a
negative request is received from one of the other sites, the entire transaction will
be rolled back. Otherwise, the distributed transaction will be committed on all
sites. However, there is a chance that an error (network related or otherwise)
causes the two-phase commit transaction to be left in pending state (i.e. not
committed or rolled back!). It is the role of the RECO process to liaise with the
coordinator to resolve the pending two-phase commit transaction. RECO will
either commit or rollback this transaction.

SYBASE Notes In ASE, there are two types of two-phase commit transactions. Remember that
in an ASE, there are multiple databases. First, there is the intra-server cross database two-phase

 9

commit. This type of two-phase commit is handled by the internal thread ASTC Handler(s).
Secondly, there is the two-phase commit between databases on remote Sybase servers. Remote
Procedure Calls (RPCs), and Component Integration Services (CIS) such as proxy tables rely on
this type of two-phase commit. In this case, ASE provides a system database called sybsystemdb
that stores information about distributed transactions. These types of transactions in ASE are
called SYB2PC (Sybase two-phase commit). sybsystemdb database has a table called
spt_committab. This table stores information about and tracks the completion status of each two-
phase commit transactions.

• ARC
The Archiver process copies an online redo log file to another location when the
redo log file is filled up. Archive log files are used for media recovery (in case of a
hard disk failure and for maintaining an Oracle standby database via log
shipping). There can be up to ten archiver processes. Archiver is only present if
the database is running in archivelog mode and automatic archiving is enabled.
LGWR process is responsible for starting multiple ARC processes when the
workload increases. Unless archiver completes the copying of a redo log file, it is
not released to LGWR for overwriting.

SYBASE Notes ASE does not have any internal threads for archiving. This is perhaps because
ASE maintains multiple databases in the same server. In order to dump an ASE’s database
transaction log, the database should not have the option “truncate log on checkpoint” enabled
(i.e. in Oracle’s terminology it should be in archivelog mode). There are two ways of backing up
transaction logs in an ASE database. The most common method is to write a shell script or use
ASE Job Scheduler to dump the transaction log of the database to a specific location on a
periodic basis. Additionally, ASE automatically executes a procedure called sp_thresholdaction
when the number of free pages on the log segment falls below the last-chance threshold. This
procedure has to be written by the DBA or the database owner (DBO). Within this procedure, you
can specify that the transaction log to be dumped to a particular location. This is somehow similar
to what the Oracle Archiver performs, although the implementation methods are different. Note
that you cannot backup transaction log of system databases in ASE.

• CJQ0
This is the Oracle’s dynamic job queue coordinator. It periodically selects jobs
that need to be run, scheduled by the Oracle job queue. The coordinator
process dynamically spawns job queue slave processes (J000…J999) to run the
jobs. These jobs could be PL/SQL statements or procedures on an Oracle
instance. Please note that this is not a persistent process. It comes and goes

SYBASE Notes This process performs similar role to ASE’s Job scheduler.

• Dnnn
The Dispatcher Process is used in a shared server environment. Dnnn supports

 10

shared server configuration by allowing user processes to share a limited number
of server processes. Shared server configuration is explained later. Oracle 10g
comes with a single Dnnn process configured by default.

SYBASE Notes There is no equivalent dispatcher process in ASE. ASE architecture is
different.

• Snnn
The Shared Server Process is used in a shared server environment. Each
shared server process serves multiple client requests in the shared server
configuration. Shared server processes and dedicated server processes provide
the same functionality, except shared server processes are not associated with a
specific user process. That is a shared server process is not a shadow process.

SYBASE Notes At a simplistic level you can think of Oracle shared server processes as
somehow equivalent to ASE engines. ASE engines like Oracle Snnn serve multiple clients.

There are other Oracle processes that are not covered here. For example, processes
specifically dealing with Oracle Real Application Clusters (such as LMS - the Lock
Manager Service, LMON – the Enqueue Service Monitor etc).The user is referred to the
appropriate Oracle documentation.

These Oracle background processes are persistent processes that make up
the instance and they will run until the instance is shutdown. Also note that
these are processes, not programs. There is only one Oracle program on
the host, i.e. there is only one binary, named oracle. It is just executed
many times with different names!

Now my next step is to mount the database and open it.

> alter database mount;

Database altered.

When you mount a database, Oracle associates the started instance with the database.
Oracle control files are opened and read. However no transactional verification such as
rollback/recovery is carried out

Finally I go ahead and open the database.

> alter database open;

Database altered.

 11

An open command opens data files, redo logs, it performs database consistency and
auto recovery. At this stage, the database "mydb" is now ready to be used by all valid
users.

I went through this long-winded approach to opening an Oracle database to
show stages involved in bringing up and onlining an Oracle database.
Otherwise you can just issue the command STARTUP to bring an Oracle
database online as shown below:

oracle@linux:/home/oracle% sqlplus "/ as sysdba"

Connected to an idle instance.

idle> startup
ORACLE instance started.

Total System Global Area 1476395008 bytes
Fixed Size 779196 bytes
Variable Size 435166276 bytes
Database Buffers 1040187392 bytes
Redo Buffers 262144 bytes
Database mounted.
Database opened.

The Oracle Startup Process, a Summary

The steps that Oracle takes in starting up can be summarized as follows:

1. startup nomount
1.1. Reads the initialization file
1.2. Allocates the shared memory (SGA)
1.3. Starts the background processes
1.4. Opens the alert and trace files

2. alter database mount
2.1. Opens and reads the control files
2.2. Mounts the database and associates the started instance with the database

3. alter database open
3.1. Opens data files and redo logs
3.2. Performs database consistency and auto recovery

 12

	 The Components of an Oracle Instance
	The Oracle Background Processes
	 MMAN
	 CKPT
	 SMON
	 ARC
	 CJQ0
	 Snnn

	The Oracle Startup Process, a Summary
	1. startup nomount
	2. alter database mount
	3. alter database open

